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Summary

Species invasion is an important disturbance to eco-

systems worldwide, yet knowledge about the impacts

of invasive species on bacterial communities remains

sparse. Using a novel approach, we simultaneously

detected phenotypic and derived taxonomic change

in a natural bacterioplankton community when sub-

jected to feeding pressure by quagga mussels, a

widespread aquatic invasive species. We detected a

significant decrease in diversity within 1 h of feeding

and a total diversity loss of 11.6 6 4.1% after 3 h. This

loss of microbial diversity was caused by the selec-

tive removal of high nucleic acid populations

(29 6 5% after 3 h). We were able to track the commu-

nity diversity at high temporal resolution by

calculating phenotypic diversity estimates from flow

cytometry (FCM) data of minute amounts of sample.

Through parallel FCM and 16S rRNA gene amplicon

sequencing analysis of environments spanning a

broad diversity range, we showed that the two

approaches resulted in highly correlated diversity

measures and captured the same seasonal and lake-

specific patterns in community composition. Based

on our results, we predict that selective feeding by

invasive dreissenid mussels directly impacts the

microbial component of the carbon cycle, as it may

drive bacterioplankton communities toward less

diverse and potentially less productive states.

Introduction

Anthropogenic disturbances can lead to rapid changes in

microbial community diversity (species richness, evenness

and composition). Many studies aim to better understand

feedbacks between global change and microbial communi-

ties, as changes in microbial diversity can either mitigate

the predicted direct effects of disturbances on ecosystem

fluxes (Singh et al., 2010; Zhou et al., 2012), or lead to

major shifts in bacterially mediated fluxes (Schimel and

Gulledge, 1998; Finlay et al., 2007; Levine et al., 2011).

The responses of microbial communities to disturbances

are often monitored by means of high-throughput molecu-

lar techniques, such as 16S rRNA gene amplicon

sequencing (Shade et al., 2012). Community shifts in

response to altering environmental parameters can occur

within hours (Props et al., 2016b) to days (Datta et al.,

2016) and demand substantial sampling effort at a prefera-

bly fixed frequency to allow accurate statistical inference

(Faust et al., 2015). Current technology allows sequencing

data to be generated from low-volume samples (e.g.,

100 ml) of low-density environments (� 106 cells ml21),

which comprise many aquatic ecosystems, but larger sam-

ple volumes (> 1 l) are required in order to yield a robust

census of the microbial community (Padilla et al., 2015).

This prohibits the use of this approach in many longitudinal

microcosm studies, for which repeated invasive sampling

itself would act as a disturbance.

Recently, a new approach has been developed that can

generate phenotypic diversity metrics based on physiologi-

cal information derived from flow cytometry (FCM) data

(Props et al., 2016a). These diversity metrics have been

shown to be highly correlated to taxonomic diversity, as

derived from amplicon sequencing. Yet, their derivation

avoids invasive, high volume sampling practices (� 1 ml of

sample required) and simultaneously offers information on

the physiological state of the community, as well as on the
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absolute density of its constituent populations. Briefly, this

approach performs kernel density estimations on multiple

bivariate single-cell parameter combinations (e.g., fluores-

cence and scatter intensity) and concatenates these into a

feature vector that is called the phenotypic fingerprint. The

phenotypic fingerprint represents the community structure

in terms of physiological aspects, such as nucleic acid con-

tent and morphology. From this fingerprint, the community

diversity can be calculated by means of the Hill diversity

numbers (Hill, 1973), which examine both richness and

evenness components of the phenotypic community struc-

ture. In parallel, this approach facilitates beta-diversity

assessments through the ordination of samples by means

of a dissimilarity matrix calculated between phenotypic fin-

gerprints. The ability to simultaneously track impacts on

phenotypic and taxonomic diversity offers opportunities to

address gaps in our understanding of microbial distur-

bance ecology. Currently, this method has only been

tested in one, low-complexity system and validation across

a broader range of diversities is needed to fully assess its

potential.

Species invasion, which is one of the main components

of global change (Chapin et al., 2000), is a particularly use-

ful system to help address knowledge gaps in microbial

disturbance ecology as we can readily mimic the real-

world conditions (i.e., sudden introduction) in laboratory or

field experiments. The current distribution of invasive dreis-

senid mussels (IDMs) across North America (> 30 states)

is a prime example of a successful invasion event (Higgins

and Vander Zanden, 2010). Initially introduced through bal-

last water, IDMs display high filtration rates (Vanderploeg

et al., 2002) and are able to rapidly populate benthic and

littoral substrates in densities of up to 19,000 individuals

per m2 (Nalepa et al., 2010). With respect to their feeding

behaviour, IDMs show highly selective feeding behaviour

toward seston and different algal and microzooplankton

taxa over a broad range of size (� 1–200 mm) (Tang et al.,

2014). While IDMs are known to strongly impact phyto-

plankton and zooplankton abundance and composition

(Higgins and Vander Zanden, 2010), the few studies

focused on their impacts on bacterioplankton report con-

tradicting results Several of these studies reported

selective feeding on bacterial species (Silverman et al.,

1995; Pires et al., 2004; Denef et al., 2017), while a long-

term environmental survey of the Hudson River prior- and

post-invasion did not observe negative effects on bacterial

community density and productivity (Findlay et al., 1998).

In this study, we investigated the effect of IDM grazing

(with Dreissena bugensis as model) on the natural bacterio-

plankton community of Lake Michigan through (near) non-

invasive tracking of the phenotypic biodiversity, as well as

the density of physiological subpopulations. We first vali-

dated whether the existing correlation between taxonomic

and phenotypic diversity metrics holds for the high diversity

environments of Lake Michigan (low primary and secondary

productivity) and one of its freshwater estuaries (high pri-

mary and secondary productivity), Muskegon Lake. We then

used phenotypic alpha and beta diversity analyses to assess

the impact and extent of IDM grazing on the bacterioplank-

ton community of Lake Michigan. The observed biodiversity

dynamics were further related to the dynamics of well-

established physiological populations in freshwater bacterio-

plankton, for which the grazing rate was determined.

Results

We aimed to use FCM-derived phenotypic diversity metrics

as a proxy for taxonomic diversity shifts occurring during

quagga mussel feeding on lake bacterioplankton. The

experiment consisted of 12 l microcosms of 153 mm

screened water and quagga mussels, both retrieved from

Lake Michigan. The Lake Michigan bacterioplankton has

previously been shown to contain both grazing-resistant

and grazing-sensitive taxa allowing the study of direct

grazing impacts (Tang et al., 2014; Denef et al., 2017).

Prior to the onset of the experiment, we assessed whether

the previously established correlation between phenotypic

and taxonomic diversity metrics for low diversity environ-

ments could be extended to higher diversity aquatic

environments, such as Lake Michigan.

Validation of phenotypic diversity as a proxy for

taxonomic diversity

Microbial communities can be classified as relatively low or

high diverse communities based on their Hill diversity met-

rics as these are expressed in terms of effective number of

taxa, which depict the number of equally abundant taxa

required to obtain the same diversity value as the commu-

nity in question (Hill, 1973). The diversity metrics derived

from flow cytometric analysis are calculated in the same

way as their taxonomic counterparts, but they can only be

interpreted in arbitrary units. In order to determine whether

there was a general relationship between the phenotypic

and taxonomic diversity, we included an independent data-

set from a low diversity cooling water microbial community

(1–10 effective number of taxa) (Fig. 1). This cooling water

dataset contains two 40-day surveys of bacterioplankton

communities present in the secondary cooling water sys-

tem of a nuclear test reactor that was subjected to multiple

operational phases. The positive correlation between taxo-

nomic and phenotypic diversity metrics of orders 1 (D1,

exponential of Shannon entropy) and 2 (D2, inverse Simp-

son index) could be extended to the Lake Michigan and

Muskegon Lake communities (cross-validated r2 5 0.89,

Pearson’s correlation rp 5 0.94 for both D1 and D2). We

opted for a single regression model as opposed to individ-

ual regressions for each environment in order to avoid
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overfitting as well as to construct a generalizable model

that provides robust inference for all three environments.

Individual regression models did not significantly differ in

slope, and the cross-validated r2 of the single regression

model was high (r2 5 0.89), thereby permitting the use of a

single regression model for monitoring diversity dynamics

(Supporting Information Fig. S1 and Supporting Informa-

tion Table S1).

The dynamic range of the regression, defined as the

ratio between the largest and smallest taxonomic diversity

used in its calculation, was 88.7 for D1 and 42.5 for D2.

Goodness-of-fit analysis of the linear regression model

indicated a normal distributed residual distribution with

homogenous variance over the entire regression range

(Supporting Information Fig. S2). The observed richness

(D0) did not show a distinct linear correlation (r2 5 0.32,

rp 5 0.54, Supporting Information Fig. S3). Due to the high

level of correlation between the phenotypic diversity (D1

and D2) and the taxonomic diversity, it was permissible to

use the phenotypic diversity as a stand-alone metric for

evaluating bacterioplankton diversity. Additionally, only D2

was used in further analyses due to the high degree of cor-

relation between D1 and D2 (rp 5 0.99).

In contrast to alpha diversity, beta diversity cannot be

captured by a single metric. Therefore, we compared the

taxonomic and phenotypic beta diversity by their perfor-

mance to detect seasonal- and lake-specific community

structures in the Lake Michigan and Muskegon Lake data

set (Fig. 2). Procrustes analysis demonstrated that both

approaches were significantly correlated in terms of the

Fig. 1. Validation for the use of the phenotypic diversity (derived
from FCM) across environments with varying degrees of taxonomic
diversity (derived from 16S rRNA gene amplicon sequencing,
n 5 138). The cooling water samples represent bacterioplankton
communities sampled throughout two 40-day temporal surveys of a
cooling water system of a nuclear test reactor (Props et al., 2016a).
Lake Michigan and Muskegon lakes samples represent
bacterioplankton communities sampled over a productivity gradient,
at various depths (110, 45 and 15 m) and throughout three
seasons (Fall, Spring and Summer). Fall, Spring and Summer
denote samples taken in September, April and July respectively.
The shaded area represents the 95% confidence interval around
the ordinary least squares regression model. Both diversities are
depicted on a log2 scale. In addition to the average variance
explained (r2) after tenfold cross validation with 100 repeats,
Pearson’s correlation coefficient (rp) is also provided. Bootstrap
error intervals fell within the label size and were not displayed.

Fig. 2. Application of the taxonomic (A) and phenotypic (B) beta-diversity (PCoA of Bray–Curtis dissimilarity matrix) to investigate season- and
lake-specific effects on the community structure of Lake Michigan and Muskegon Lake (n 5 87). Fall, Spring and Summer denote samples taken
in September, April and July respectively. The variance explained by the lake and season variables, as well as the interaction effect between the
lake and season variable is provided (PERMANOVA). All effects were significant at the p 5 0.001 level with the exception of the interaction effect
for the phenotypic beta diversity (p 5 0.018). Procrustes analysis confirmed the high degree of correlation between both beta-diversity analyses
(p 5 0.001, 999 permutations). Permutations for PERMANOVA and Procrustes analyses were constrained within each survey year.
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patterns that they captured in the data (p 5 0.001). Addi-

tionally, both approaches identified season and lake type

(Lake Michigan or Muskegon Lake) as significant predic-

tors of the community structure (p 5 0.001). The season

explained the most variance in the beta diversity (i.e.,

19.6% of the taxonomic beta diversity and 22.5% of the

phenotypic beta diversity). Lake type still captured 17.4%

of the variance in the taxonomic beta diversity, but only

7.0% in the phenotypic beta diversity. Finally, the seasonal

effect was dependent on the lake type, representing an

extra 9.4% of the variance in the taxonomic beta diversity

(p 5 0.001) and 4.6% in the phenotypic beta diversity

(p 5 0.018).

Diversity dynamics during IDM feeding

The temporal trajectory of the bacterioplankton community

of the microcosms was monitored for 3 h at a resolution of

0.5 h when subjected to the direct feeding pressure by 15

IDMs per microcosm (Fig. 3). This time period was suffi-

ciently long to allow the assessment of direct feeding

effects (removal of 30–60% of seston), but short enough to

avoid indirect effects, e.g., due to trophic cascades or sub-

stantial accumulation of feces and pseudofeces

(Vanderploeg et al., 2010). Importantly, all mussels were

subjected to an extensive pretreatment consisting of spe-

cific handling, rinsing and acclimatization steps in order to

avoid contamination of the bacterioplankton community

by external periphyton, debris and ingested particles at

the onset of the experiment (see Experimental

procedures section). The size distribution of the mussels

was not significantly different between the microcosms

(22.7 6 2.3 mm, Kruskal–Wallis test, p 5 0.08). The

total dry weight of the mussels per microcosm was

0.24 6 0.018 g DW.

Over the span of the experiment, the control micro-

cosm’s phenotypic diversity exhibited a minor overall

positive temporal drift (p 5 0.038). In contrast, the bacter-

ioplankton phenotypic diversity underwent a clear and

significant decrease (p < 0.0001) during filter feeding of

the IDMs, signifying the enrichment of the community by

certain taxa (Fig. 3A). The treatment effect became signifi-

cantly distinguishable from the control at the 1 h mark (at

p < 0.05). Using the regression model, an average loss in

taxonomic diversity (D2) could be predicted of 2.6 6 1.0

effective number of taxa, corresponding to a decrease of

11.6 6 4.1% over the course of the experiment. Conceptu-

ally, this means that in a hypothetical community of 23

equally abundant taxa (diversity prior to mussel feeding),

an average of 2.6 taxa would be lost due to IDM feeding.

To put these measurements in perspective, we analysed

data from a recently published mussel-feeding study that

used the same experimental design and had 16S rRNA

gene amplicon data at time points 0 and 3 h available (Fig.

4) (Denef et al., 2017). We calculated a mean loss of taxo-

nomic diversity (D2) of 5.32 6 4.65 for their three

independent experiments, which is comparable to the taxo-

nomic diversity loss predicted for our experiment

(2.6 6 1.0).

While the monitoring of the phenotypic alpha diversity

allowed us to track the treatment effect through time, a

beta diversity analysis was also conducted to evaluate the

Fig. 3. Feeding effect on the phenotypic alpha diversity (A) and phenotypic beta diversity (B) of the bacterioplankton community. Bootstrap
error intervals on the phenotypic diversity were calculated on three technical replicates for each microcosm but fell within the label size and
are therefore not displayed. Shaded areas indicate 95% confidence intervals on the robust smoothing spline regressions. Label radius of the
data points in the beta-diversity analysis is proportional to the time into the experiment. The variance explained by the overall temporal and
feeding effect, as well as the interaction effect between the feeding and experiment time is provided (PERMANOVA). All effects were
significant at the p 5 0.01 level.

4 R. Props et al.

VC 2017 Society for Applied Microbiology and John Wiley & Sons Ltd, Environmental Microbiology, 00, 00–00



treatment and temporal effects on the complete phenotypic

structure of the bacterioplankton community (Fig. 3B).

Over the course of the experiment the bacterioplankton

communities of the control and treatment microcosms

became more dissimilar. In agreement with the alpha

diversity analysis, a time-dependent treatment effect

(r2
feeding 5 0.34, p 5 0.005) was driving the bacterioplank-

ton structure, with the control bacterioplankton community

also experiencing a minor temporal effect (r2
control 5 0.08,

p 5 0.006).

Bacterioplankton population dynamics during IDM

feeding

Next, we investigated whether the observed diversity

dynamics were caused by selective feeding on specific

phenotypic populations of the bacterioplankton commu-

nity. To do so, contrasts between the phenotypic

fingerprints of the treatment and the control at three dif-

ferent time points were calculated (Fig. 5A). This

analysis allowed the visualization of regions in a speci-

fied bivariate parameter space which are relatively more

or less abundant in the treatment versus the control. We

opted for the primary fluorescence channels of the

SYBR Green nucleic acid stain (i.e., FL1-H and FL3-H)

allowing us to identify distinct physiological populations

with varying nucleic acid content (Gasol et al., 1999;

Hammes and Egli, 2010; Koch et al., 2014). The results

demonstrate that during filter feeding the

bacterioplankton community became enriched with a

low nucleic acid content population (LNA, low FL1-H/

FL3-H intensity) and was depleted from a high nucleic

acid (HNA) content population (high FL1-H/FL3-H

intensity).

As these are relative changes that do not necessarily

reflect a direct feeding effect on the HNA population, the

absolute abundances for both the HNA and LNA popula-

tion were extracted from the total community according to

the guidelines by (Prest et al., 2013) (Supporting Informa-

tion Fig. S4). The LNA cell densities show similar temporal

behaviour for the control (coefficient of variation

[CV] 5 5.8%) and treatment (CV 5 5.2%) microcosms

(Fig. 5B). This level of variation falls within the technical

variation of current FCM technology (CV 5 5%) and is

thus not indicative of a feeding effect (Hammes et al.,

2008). In contrast, the HNA population was directly

affected by the filter feeding (Fig. 5C). The HNA population

of the control microcosms displayed a similar variation to

the LNA population (CV 5 5.1%), while the HNA popula-

tion in the treatment microcosms showed a monotonic

decrease throughout the experiment (CV 5 12.8%). Analo-

gous to the diversity analyses, a significant treatment

effect could be detected within 1 h. Using robust linear

regression, the HNA-specific removal rate was estimated

at 43,000 6 3000 cells ml21 h21 (p < 0.0001), while the

control HNA cell density remained constant (p 5 0.98).

After 3 h of being subjected to filter feeding, 29 6 5% of

the HNA bacterioplankton population was removed from

Fig. 4. Measured or predicted taxonomic alpha diversity of Lake Michigan bacterioplankton communities after a three hour exposure to
invasive quagga mussels. Measured taxonomic diversity data is publicly available from Denef and colleagues (2017). The measured data
comes from feeding experiments that were carried out with Lake Michigan bacterioplankton communities retrieved over a two year period and
under the identical experimental design as described in this manuscript. Predicted alpha diversity values were calculated based on the
phenotypic diversity data generated in this study.
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the water column. The clearance rate on the HNA popula-

tion was 4.56 6 0.81 ml mg21 DW h21.

Discussion

Our understanding of microbial disturbance ecology has

been partially constrained by a lack of temporal resolution,

caused by methodological limitations in either sampling,

logistics or analysis. In order to combat these bottlenecks,

we further developed and validated a (near) non-invasive

FCM-based approach dedicated to detect changes in the

phenotypic diversity of microbial communities. We validated

and applied these phenotypic diversity metrics to natural,

high diversity environments, and investigated the response

of bacterioplankton communities to a filter feeding distur-

bance caused by IDMs, which are highly sensitive to the

invasive sampling imposed by alternative monitoring techni-

ques (i.e., they would cease their filter feeding activity). Our

experimental results highlight the sensitivity of our method

to detect subtle changes in diversity over short timeframes.

Based on (i) our presented relationship between pheno-

typic and taxonomic diversity, (ii) the positive relationship

that exists between HNA bacterial populations and bacterial

productivity in many ecosystems (Zubkov et al., 2001;

Fig. 5. Dynamics of high nucleic acid (HNA) and low nucleic acid (LNA) populations.

A. Contrasts between the flow cytometric fingerprints of the control samples and the feeding samples after 0, 1.5 and 3 h. Red contours

indicate an increase in the LNA population density during feeding, while blue contours indicate a decrease in the HNA population density

during feeding, both of which are relative to the control samples at the specified time point. Only contrasts with densities > |0.04| were

visualized.

B. Cell density of the LNA population over the course of the feeding experiment. Error bars indicate standard deviation across technical

replicates (n 5 3).

C. Cell density of the HNA population over the course of the feeding experiment. Error bars indicate standard deviations across technical

replicates (n 5 3). Shaded areas indicate 95% confidence intervals on the robust linear regression models.
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Servais et al., 2003) and (iii) the results of our filter feeding

experiment, we hypothesize that IDM feeding directly influ-

ences both microbial diversity and ecosystem functionality.

Relation between taxonomic and phenotypic diversity

The regression between the taxonomic and phenotypic

diversity data is in agreement with and expands upon pre-

vious research (Props et al., 2016a) and offers further

insight into the fundamental relation between these met-

rics. Concretely, the regression’s dynamic range has been

extended from 10.3 in the previous study (cooling water) to

42.5 for the diversity of order 2 (D2). The quality of the

cross-validated regression is worth highlighting as there

were substantial differences in the sample treatment and

data generation of the data sets, which could have led to

systematic bias. First, the FCM samples of Lake Michigan

and Muskegon Lake were fixed with glutaraldehyde and

archived at 2808C, whereas the cooling water samples

were analysed directly. The glutaraldehyde fixative used in

this research has been shown to increase autofluores-

cence and may have increased the instrument noise

(Gunther et al., 2008). Nevertheless, the bacterioplankton

community could be reproducibly isolated from the raw

data with one fixed denoising strategy for the entire data

set (Supporting Information Fig. S4). Second, the amplicon

sequencing of the 16S rRNA gene targeted the V4 region

for the Lake Michigan and Muskegon samples, whereas

the V3–V4 region was targeted for the cooling water sam-

ples. This difference in sequenced region has been shown

to potentially alter the observed diversity (Schmalenberger

et al., 2001; Yu and Morrison, 2004). We did not observe

this bias in the taxonomic diversity, but we did observe that

the phenotypic diversity was incapable of resolving the

Lake Michigan and Muskegon Lake communities, even

though they had distinct taxonomic diversities. The regres-

sion analysis showed that the strength of the relationship

between the phenotypic and taxonomic diversity was unaf-

fected, but that the intercept of the linear models was

different (p < 0.001). Therefore, we emphasize that the

absolute values of the phenotypic diversity metrics need to

be compared within a single ecosystem or experimental

setting. Finally, rescaling or subsampling the community

composition to an equal library size, which is a common

yet debated practice in microbial community analyses

(McMurdie and Holmes, 2014), did not negatively affect

the regression (Supporting Information Fig. S5). In fact, it

improved the regression for all diversity metrics and in par-

ticular D0, indicating that the phenotypic diversity metrics

are primarily sensitive to fluctuations in the density of abun-

dant taxa. As such, we recommend to evaluate changes in

richness (D0) solely by means of 16S rRNA gene amplicon

sequencing, for which novel statistical approaches are

being developed that account for both observed and

unobserved taxa (Willis and Bunge, 2015). It is important

to note that in order to compare FCM-derived diversity

metrics with each other, the underlying raw data must have

been generated by the same flow cytometer platform with

identical detector and flow rate settings, which was the

case for all data presented in this study.

The linearity on the log-scale implies that the change in

phenotypic diversity required to detect a corresponding

change in taxonomic diversity systematically increases

(Fig. 1). For example, at low diversities, a change from

1000 to 1500 units in phenotypic diversity corresponds to a

predicted change of 3.4 units in the taxonomic diversity,

while an increase from 1500 to 2000 units only corre-

sponds to a predicted change of 2.0 units in the taxonomic

diversity. This is one of the limitations of relying on a fixed

number of phenotypic parameters (i.e., fluorescence and

scatter intensities); the available parameter space that bac-

terial cells can occupy is limited, resulting in a loss of

sensitivity at higher diversities.

The beta diversity analyses yielded similar statistical

inference on the seasonal- and lake-specific effects, with

both the taxonomic and phenotypic beta diversity identify-

ing seasonality as the most important predictor of

community structure. A higher degree of variance could be

explained by the lake type in the taxonomic beta diversity,

which suggests that the phenotypic approach was less

sensitive to differences in taxon distributions between the

lakes or that additional variation based on phenotypic plas-

ticity weakens the relationship between taxonomic and

phenotypic beta diversity. This is congruent with the alpha

diversity measurements where Lake Michigan and Muske-

gon Lake samples showed similar phenotypic diversity

despite possessing distinct taxonomic diversities. Overall,

Procrustes analysis confirmed that the phenotypic beta

diversity was able to largely capture the same patterns in

the data as the taxonomic beta diversity. As such, pheno-

typic beta diversity analyses constitute a valid approach for

hypothesis testing in high diversity environments, but they

are susceptible to a higher degree of variability and thus

generate potentially lower effect sizes (e.g., for the lake

type in this analysis).

Diversity and population dynamics

The phenotypic diversity dynamics during the 3 h filter

feeding experiment were more subtle than in our previous

study on the cooling water dataset (< 150 vs. > 500 units;

Props et al., 2016a) but occurred over a much shorter time

scale (3 h vs. multiple days). Importantly, the predicted

loss in taxonomic diversity based on the phenotypic diver-

sity (2.6 6 1.0) lies well within the range of expected

diversity shifts (5.32 6 4.65) calculated from previous

experiments which had start and endpoint measurements

of community composition (Fig. 5). Our predictions also
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suggest (i) a general season-dependent bacterioplankton

diversity with a higher diversity in summer than in fall and

winter and (ii) a season-dependent feeding effect resulting

in a higher diversity loss in summer than in fall and winter.

Overall, the conformity of our predictions to these previous

experiments further validates the phenotypic diversity

approach.

The diversity dynamics suggested that D. bugensis was

selectively feeding upon a fraction of the bacterioplankton

community, thereby altering the community composition

and lowering the diversity. This was confirmed by identify-

ing populations that were selectively enriched through

contrast analysis, which demonstrated the selective feed-

ing on bacteria with HNA content (HNA bacteria) (Fig. 4A).

The HNA clearance rate (4.56 6 0.81 ml mg21 DW h21),

which can be interpreted as the water volume that is fully

depleted of HNA bacteria per hour, was comparable to

those previously reported for Dreissena polymorpha feed-

ing on laboratory strains (3.5–4.8 ml mg21 DW h21)

ranging in size between 1 and 4 mm in length (Silverman

et al., 1995). The clearance rates on laboratory strains

were measured for high cell densities (> 107 cells ml21)

relative to the natural densities in Lake Michigan in this

study (� 106 cells ml21), and with different IDM species at

a higher temperature, thus making direct comparisons

difficult. With respect to experiments on natural bacterio-

plankton, mixed results have been reported. For river

bacterioplankton, short-term mesocosm experiments

provided no evidence of a direct feeding effect, while long-

term environmental surveys suggested a doubling in bac-

terioplankton densities (Findlay et al., 1998). In lakes,

feeding on bacteria in low nutrient systems was thought to

be limited (Cotner et al., 1995), though short-term feeding

experiments on natural bacterioplankton from Lake Michi-

gan did detect significant decreases in bacterioplankton

densities (Denef et al., 2017).

HNA and LNA populations have been well-characterized

in aquatic environments, yet considerable debate remains

regarding the characteristics of each population. Initially, it

was thought that the HNA population was the active frac-

tion of the bacterial community, whereas the LNA

population served as a reservoir of dormant, inactive,

dead, dying and damaged cells (Lebaron et al., 2002).

Nowadays, the LNA population has been shown to be able

to actively grow and to be metabolically active in the envi-

ronment without adopting HNA properties, such as HNA

content and increased cell size (Jochem et al., 2004;

Scharek and Latasa, 2007; Wang et al., 2009). Most stud-

ies do report an elevated cell-specific activity for the HNA

bacteria that can be more than an order of magnitude

higher than the activity of the LNA bacteria (Lebaron et al.,

2002; Servais et al., 2003). HNA bacteria are also gener-

ally larger and exhibit higher growth rates than LNA

bacteria (Lebaron et al., 2002; Jochem et al., 2004;

Scharek and Latasa, 2007), and this large, active fraction

of the bacterioplankton is preferred by zooplankton grazing

(Boenigk et al., 2004; Tadonleke et al., 2005; Garcia-

Chaves et al., 2016).

HNA population densities tend to be positively correlated

with heterotrophic productivity (Zubkov et al., 2001;

Bouvier et al., 2007). Thus, we would expect relatively low

HNA densities in Lake Michigan, which has been rendered

increasingly oligotrophic (low primary and secondary

productivity) since the ingress of IDMs (Evans et al.,

2011). HNA population densities in Lake Michigan field

samples (29.6 6 4.2%, n 5 30) were even lower than

those reported in previous surveys of freshwater lakes

(40–42.5%, n 5 81) with similar levels of primary produc-

tivity (2 6 1.5 vs. 1.5 6 1.2 mg chlorophyll a l21 in our 2015

survey of Lake Michigan) (Bouvier et al., 2007; Shuchman

et al., 2013). We observed that IDMs predominantly feed

on the HNA population; this may in part explain these

lower than expected HNA densities, as Lake Michigan is

characterized lake-wide by high densities of IDMs (Nalepa

et al., 2010). With the HNA bacteria leveraging as much as

80% of the community’s secondary production and mediat-

ing up to 70% of the bacterial carbon flux in other aquatic

environments, the selective feeding by IDMs may have a

significant impact on elemental cycling in lake systems

(Zubkov et al., 2001; Scharek and Latasa, 2007).

Community characterization of HNA and LNA popula-

tions has shown that there can be significant differences in

community composition, with few shared taxa between the

populations (Schattenhofer et al., 2011; Vila-Costa et al.,

2012). As a consequence, selective removal of a single

population (e.g., HNA) will alter the community diversity,

which was observed during this filter feeding experiment.

Other studies using basic molecular fingerprinting techni-

ques did not observe distinct community structures

(Servais et al., 2003; Longnecker et al., 2005). Hence, sev-

eral scenarios have been developed to explain the

dichotomy between HNA and LNA bacterioplankton popu-

lations (Bouvier et al., 2007). Our results only allow us to

support the scenario in which each population has a sepa-

rate community structure, since considerable repopulation

of the HNA population through growth or potential recruit-

ment from the LNA population can take several days

(Gasol et al., 1999; Sintes and del Giorgio, 2014; Baltar

et al., 2016).

While few investigations into the impacts of IDM on bac-

terial community composition have been performed, our

observations are congruent with studies that have shown

altered composition in the sediment (Frischer et al., 2000;

Lohner et al., 2007; Lee et al., 2015) and water column

(Denef et al., 2017) following IDM introduction. In these

studies, specific taxonomic groups were shown to become

relatively enriched within the microbial community. Among

others, taxa of the phylum Actinobacteria and the genus
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Polynucleobacter, which are known to possess LNA-type

characteristics such as small cell sizes (Wang et al.,

2009), increased in relative abundance during short-term

microcosm experiments (Denef et al., 2017). Other taxa

(e.g., Chloroflexi) became enriched despite their larger cell

size, suggesting that multiple phenotypic traits beyond

mere cell size determine the feeding success on bacterial

taxa. Relative enrichments do need to be interpreted with

care as these can provide biased interpretations of the

actual taxon abundance dynamics (Nayfach and Pollard,

2016; Props et al., 2016b; Stammler et al., 2016).

In conclusion, we have shown that advanced data analy-

sis of FCM data can lead to robust predictions of

taxonomic diversity within a large dynamic range. We fur-

ther demonstrated that the diversity of natural

bacterioplankton communities can be reliably tracked dur-

ing sensitive ecological processes in a fast, non-invasive

manner. Using this approach we were able to detect subtle

shifts in biodiversity emerging within one hour of feeding

by IDMs. The selective removal of HNA bacteria was

shown to be underlying cause of the loss of biodiversity,

suggesting size-selective feeding behaviour in the micro-

metre range. As a result, IDMs are capable of locally

reducing the diversity and productivity of the bacterioplank-

ton community during feeding. The approach presented

here can be readily applied to help address a broad range

of questions in marine and freshwater systems, for which

new analytical and computational tools are needed (Lab-

bate et al., 2016). FCM is now also increasingly being

developed for other environments such as soils, sediments

and sludges, opening new possibilities for these systems

as well (Frossard et al., 2016).

Experimental procedures

16S rRNA gene amplicon sequencing analysis

We used a combination of a previously published data set

from 2013 and newly generated V4 16S rRNA gene amplicon

sequences from 2014 and 2015 lake surveys (see data avail-

ability section). V4 amplicon sequencing data from Lake

Michigan (2015 survey) and Muskegon Lake (2014, 2015 sur-

veys) were generated exactly as previously described

(Schmidt et al., 2016). Samples were taken in September

(Fall), April (Spring) and July (Summer). The DNA was

extracted according to a previously optimized protocol

(McCarthy et al., 2015) and submitted for sequencing of the

V4 hypervariable region (515F/806R) by Illumina MiSeq with

v2 chemistry (2 3 250 bp). All raw sequencing reads from

these surveys were processed together, after which the sam-

ples with matching FCM data were extracted.

Contigs were created by merging paired-end reads based

on the Phred quality score heuristic (Kozich et al., 2013) in

MOTHUR (v.1.38, seed 5 777) (Schloss et al., 2009). Contigs

were aligned to the Silva database (v123) and filtered from

those with (i) ambiguous bases, (ii) more than 8 homopoly-

mers, (iii) a length outside of the 240–275 nt range and (iv)

those not corresponding to the V4 region. The aligned

sequences were filtered and dereplicated, and sequencing

errors were removed using the pre.cluster command. Chimera

removal was performed by UCHIME. Sequences were clus-

tered into operational taxonomic units (OTUs) at 97%

similarity with the cluster.split command (average neighbor

algorithm). Sequences were then classified using the TaxAss

pipeline (https://github.com/McMahonLab/TaxAss), which

classifies sequences according to both a small, manually

curated freshwater taxonomy database (Newton et al., 2011)

and a large, general database (SILVA v123). The complete

workflow is available at https://github.com/rprops/Mothur_

oligo_batch and was run in batch mode. For comparison to

the FCM data, only the samples comprising the bacterioplank-

ton fraction (0.22–3 mm fraction) were used in further

analyses, as this fraction was the most directly comparable to

the measurements taken by the flow cytometer.

The cooling water reference data contain publicly available

V3–V4 16S rRNA gene amplicon sequences and are available

from the NCBI Sequence Read Archive (SRA) under acces-

sion number SRP066190. We utilized the OTU-table from a

previous publication as basis for the diversity calculations

(Props et al., 2016b). This OTU-table was generated accord-

ing to the same pipeline as described earlier.

FCM analysis

A total of 1 ml of unfiltered water samples were fixed with 5 ml

glutaraldehyde (20%, vol/vol, stock), incubated for 10 min in

the dark and flash frozen in liquid nitrogen (storage at 2808C).

Prior to FCM analysis, batches of eight samples were sequen-

tially defrosted, acclimated to room temperature, diluted

twofold in triplicate and stained with SYBR Green I (10,0003

in DMSO; Invitrogen) to a final concentration of 13 SYBR

Green I. Samples were then incubated at 378C for 20 min in

the dark and analysed directly on a BD Accuri C6 cytometer

(BD Biosciences, Erembodegem, Belgium) in fixed volume

mode (50 ml) (Props et al., 2016a). This resulted in a multi-

parametric description of each microbial cell by four

fluorescence parameters (FL1: 533/30 nm, FL2: 585/40 nm,

FL3: > 670 nm long pass, FL4: 675/25 nm) and two scatter

parameters (FSC and SSC). Instrument performance was ver-

ified daily using eight peak rainbow particles (Spherotech,

Lake Forest, IL).

Phenotypic diversity analysis

The alpha diversities for both the FCM and sequencing

data were assessed by the Hill diversity numbers, which incor-

porate both richness and evenness components (Hill, 1973).

We followed the previously published protocol available here:

https://github.com/rprops/Phenoflow_package/wiki/1.-Phenotypic-

diversity-analysis (Props et al., 2016a). Raw flow cytometer data

were exported in FCS format and imported into R (v3.3.0), using

functions from the flowCore package (v1.38.2). The data were

denoised from (in)organic noise based on previous experience

with freshwater communities and according to published guide-

lines for robust denoising (Prest et al., 2013) (as described in

Supporting Information Fig. S4). The denoising strategy

remained the same for all samples. Samples with less than
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10,000 cells were discarded since sample sizes larger than this

threshold were required for the robust estimation of the diversity

(Supporting Information Fig. S6). All single-cell parameters were

normalized based on the maximum signal height (-H) of the FL1

parameter. The Diversity function from the Phenoflow package

(v1.0, https://github.com/rprops/Phenoflow_package) was then

used to calculate the phenotypic alpha diversities of the four pri-

mary parameters (FL1-H, FL3-H, FSC-H and SSC-H). Errors on

the diversities were generated after 100 bootstraps and propa-

gated to the mean diversity over the three technical replicates.

The kernel density estimations were performed with a bandwidth

of 0.01, a grid size of 128 3 128 and a rounding factor of 3. The

alpha diversity was evaluated through the first three Hill numbers:

D0, D1 and D2, which correspond to the observed richness, the

exponential of Shannon entropy and the inverse Simpson index

respectively. Beta diversity analyses were performed by principal

coordinate analysis (PCoA) of the phenotypic fingerprints (flow-

Basis function, d 5 3, bw 5 0.01) using the Bray–Curtis

dissimilarity metric (beta_div_fcm function, default settings). Con-

trasts between the phenotypic fingerprints of the control and

treatment groups were made by the fp_contrasts function (see

tutorial here: https://github.com/rprops/Phenoflow_package/

wiki/3.-Making-contrasts).

Taxonomic diversity analysis

For calculating the taxonomic alpha diversity, we used the

Diversity_16S function from the Phenoflow package because

this allowed a direct comparison between the taxonomic and

phenotypic diversity metrics. The community data were not

rarefied because our hypothesis was that the taxonomic diver-

sity was correlated with an unrelated variable, the phenotypic

diversity. Subsampling to the lowest sample size would result

in the poorest estimate of the taxonomic diversity for all sam-

ples, thereby potentially obscuring the true relationship

between these variables. Instead, we selected only samples

which had a sample size larger than 10,000 reads (n 5 138),

generated 100 bootstrap samples for each sample and took

the average diversity as the sample representative diversity.

Parallel results of our analyses for the rescaled data to 10,000

reads are available in Supporting Information Fig. S5. For beta

diversity analysis, the OTU abundances were rescaled by cal-

culating their proportions and multiplying them by the

minimum sample size present in the data set (McMurdie and

Holmes, 2014). The beta diversity was then assessed by

PCoA of the Bray–Curtis dissimilarity matrix, which was calcu-

lated based on the taxon proportions instead of the read

counts in order to be directly comparable to the phenotypic

beta diversity approach.

Feeding experiment

Quagga mussels and lake water (5 m above lake floor) were

collected at 45 m deep from Lake Michigan (438120N,

868270W). Mussels were rinsed of adhering sediment and

were transported (< 8 h) submerged in lake water at 5–78C.

The standard handling and experimental design of (Vander-

ploeg et al., 2010) was followed and is briefly outlined as

follows. In the lab, the mussels were cleaned of debris and

placed in a tank filled with 90 l of 153 lm-screened Lake

Michigan water in order to remove grazing mesozooplankton

in an environmental room set to ambient temperature of the

lake water (9.78C). The next morning the mussels were trans-

ferred to a 40 l aquarium with 153 mm screened Lake

Michigan water for 2 h. The mussel cleaning and � 14 h re-

acclimation period allowed the removal of external periphyton

and debris, cleared the mussel guts of sediment ingested dur-

ing capture and gave mussels time to reach digestive

equilibrium with their natural food source. All materials were

washed with bleach and rinsed with deionized water to mini-

mize bacterial contamination. Seven 19 l HDPE cylindrical

containers were filled with 12 l of 153 mm-screened lake water

each. Forty-five adult mussels were spread evenly across

three containers (15 mussels per container) and two contain-

ers remained mussel-free. Gentle mixing was provided by

bubbling air through a pipette, and all experiments were

carried out under dim light (� 8 lmol quanta m22 s21). Water

samples were taken before the addition of the mussels and

every 0.5 h after the mussels showed signs of active feeding

(after approx. 15 min). The number of mussels added and the

experiment duration were chosen to allow healthy mussels to

clear 30–60% of preferred seston. As shown in a previous

study (Denef et al., 2017), our procedure ensures that

mussel-associated bacteria do not significantly impact

observed shifts in bacterial community composition over the

duration of the experiment. One millilitre water samples from

the top water layer were taken every 30 min throughout and at

the end of the 3 h experiment. The samples were fixed with

5 ml glutaraldehyde (20%, vol/vol), incubated for 10 min in the

dark and flash frozen in liquid nitrogen (storage at 2808C).

Statistical analysis

All statistical analyses were performed in the R statistical envi-

ronment (v3.3.0) (R Core Team, 2015), using functions from

the vegan (v2.4-1), sandwich (v2.3–4), MASS (v7.3–45), car

(v2.1–3), phyloseq (v1.16.2), lmtest (v0.9–34) and caret

(v6.0–73) packages. Errors on all summary statistics repre-

sent standard deviations on the mean and were calculated by

propagating individual standard deviations as randomly dis-

tributed, independent errors. Ordinary least squares

regression was used to relate the phenotypic diversity to the

taxonomic diversity (both log2 transformed). Model assump-

tions (i.e., normality and homoscedasticity) were evaluated

through analysis of the residuals (Supporting Information Fig.

S2). Goodness-of-fit statistics were calculated through tenfold

cross validation with 100 repeats. Inference on the temporal

treatment effect on the phenotypic diversity (D2) was per-

formed by spline regression. We opted for natural splines

because these provide more stable estimates at the bound-

aries (James et al., 2014). Splines were given 3 degrees of

freedom, allowing two knots to occur at the 33.3% and 66.6%

quantiles (i.e., at time points 1 and 2 h). Parameter estimation

was performed by the robust ordinary least squares method.

Robust linear regression is a variation on the traditional ordi-

nary least squares (ols) regression that provides more correct

inference when assumptions for ols regression are invalid (i.e.,

less sensitive to outliers). Due to the presence of moderate

temporal autocorrelation in the model residuals (Supporting

Information Fig. S8), robust parameter errors, calculated from

the autocorrelation adjusted covariance matrix (vcovHAC
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function), were used in the statistical inference (Wald test). Dif-

ferences between groups in the beta diversity analysis were

evaluated by means of permutational multivariate ANOVA

(PERMANOVA, adonis function, 999 permutations) of the

Bray–Curtis dissimilarity matrix, after confirmation of the

homogeneity of the variance in the groups (betadisper func-

tion). Similarity between beta diversity analyses was

evaluated through Procrustes analysis (protest function, 999

permutations). Temporal trends in the HNA cell density, as

well as the feeding rate, were determined through robust ordi-

nary least squares linear regression. Statistical inference on

the model parameters was performed with the Wald test. The

clearance rate (CR) was determined based on the robust lin-

ear regression of the HNA cell dynamics:

CR5
V

n
3

a

b

V is the water volume of the container (ml), n is the average

dry weight of the mussels (mg), a is the slope of the regres-

sion (cells ml21 h21) and b is the intercept of the regression

(cells ml21).

Data availability

The entire data-analysis pipeline is available as an R Mark-

down document at https://github.com/DenefLab/EnvMicro_

Props2017. Raw FCM data are available on FlowRepository

under accession IDs FR-FCM-ZZNA (cooling water), FR-

FCM-ZYZA (mussel feeding experiment) and FR-FCM-ZYZN

(Lake Michigan and Muskegon Lake survey). Newly generated

V4 16S rRNA sequences from lake Michigan and Muskegon

Lake were deposited on the NCBI SRA under BioProject ID

PRJNA412984 and PRJNA412983, respectively. For Lake

Michigan, the 2013 data set is publicly available on the Joint

Genome Institute’s genome data portal (http://genome.jgi.doe.

gov/; project IDs 1041195 and 1041198).
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Supporting information

Additional Supporting Information may be found in the

online version of this article at the publisher’s web-site:

Fig. S1. Validation for the use of the phenotypic diversity

(derived from FCM) across environments with varying degrees

of taxonomic diversity (derived from 16S rRNA gene amplicon

sequencing, n 5 138). The cooling water samples represent

bacterioplankton communities sampled throughout two 40-day

temporal surveys of a cooling water system of a nuclear test

reactor (Props et al., 2016a). Lake Michigan and Muskegon

lakes samples represent bacterioplankton communities sam-

pled over a productivity gradient, at various depths (110, 45

and 15 m) and throughout three seasons (Fall, Spring and

Summer). Fall, Spring and Summer denote samples taken in

September, April and July respectively. The shaded area rep-

resents the 95% confidence interval around the ordinary least

squares regression model. Both diversities are depicted on a

log2 scale. Bootstrap error intervals fell within the label size

and were not displayed.
Fig. S2. Residual analysis for the ordinary least squares

regression between the taxonomic and phenotypic diversi-

ties of order 2 (D2). Left panel: quantile–quantile plot indi-

cating approximate normality of the residuals. 95%

confidence intervals were calculated on 10,000 bootstraps.

Middle panel: Pearson residuals plotted against the pre-

dicted values indicate homoscedastic errors. Right panel:

observed values plotted against predicted values.
Fig. S3. Ordinary least squares regression between the

phenotypic diversity and taxonomic diversity of orders 0

(left) and 1 (right) (D0, D1). In addition to the variance

explained by the model (adj. r2), the Pearson’s correlation

coefficient has also been provided (rp).
Fig. S4. Gating strategy for denoising the raw flow cytome-

try data visualized for the control and treatment samples at

three time points. Fluorescence values were arcsinh-

transformed and were normalized by the maximum fluores-

cence intensity. The outer boundary encompasses the total

microbial community, while the inner FL1-H threshold (FL1-

H 5 0.67) separates the high nucleic acid (HNA) popula-

tions from the low nucleic acid (LNA) population. Color

intensity is proportional to the log-scaled density value.
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Fig. S5. Regression analysis between the taxonomic and

phenotypic diversity of orders 0 (D0), 1 (D1) and 2 (D2) after

rescaling sample sizes to 10,000 reads.
Fig. S6. Evaluation of required sample size for robust cal-

culation of the phenotypic diversity illustrated for one ran-

domly chosen sample (control microcosm at time point 1 h).

The phenotypic diversity was calculated for 100 bootstrap

samples at each specified sample size (number of cells).

Parameter settings were kept identical to those used in the

other analyses.

Fig. S7. Autocorrelation plots for the smoothing spline

regressions of the phenotypic diversity of order 2 (D2). Blue
dashed lines indicate thresholds for significant autocorrela-
tion between the temporal profiles of the Pearson residuals,
separated by the specified lag interval.
Table S1. Multiple comparisons between slopes of linear

regression models between taxonomic (16S) and pheno-
typic diversity (FCM) for each environment (see Supporting
Information Fig. S1 for visualization of each regression).
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